

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

### ZNZ Advanced Course in Neuroscience Mon 20.04.2015 Limbic System I

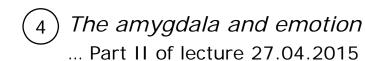
David P. Wolfer MD

Institute of Anatomy, University of Zurich Institute for Human Movement Sciences and Sport, ETH Zurich http://www.dpwolfer.ch dpwolfer@anatom.uzh.ch, dwolfer@ethz.ch

# Limbic system – outline



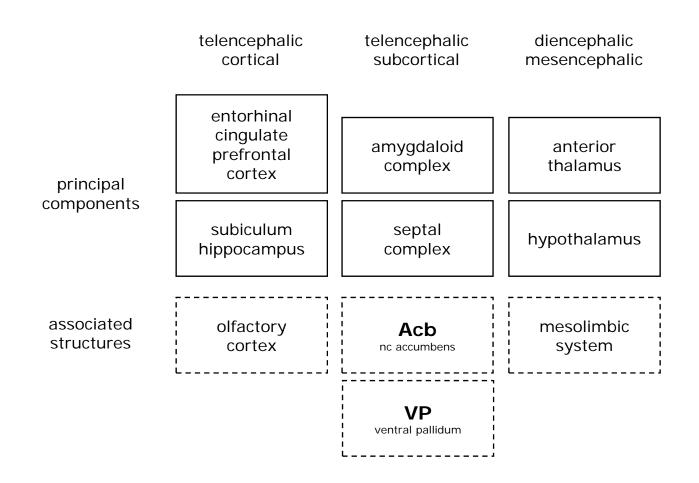
- history
- definition


2) Theories of hippocampal Function – rodent tests

- declarative memory
- episodic memory
- cognitive map
- relational memory

#### 3) The hippocampus

beyond memory


- exploratory behavior and anxiety
- species typical behaviors
- home cage behavior

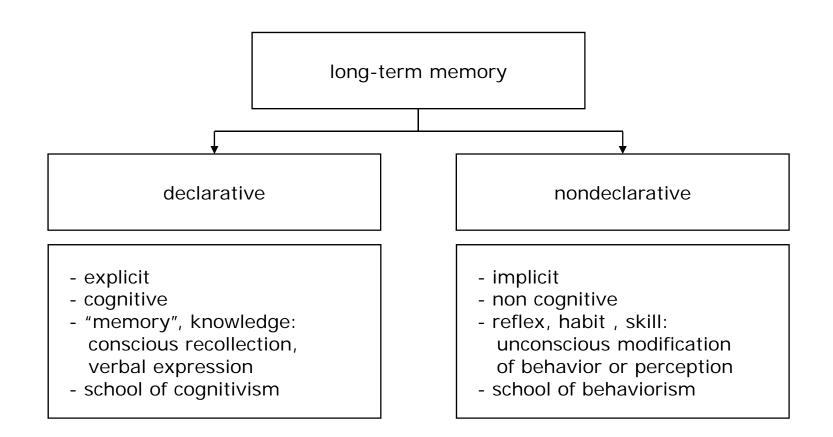


# Limbic system components – history

| 1878         | P. Broca                    | anatomical definition: <b>grand lobe limbique</b> (limbus = border, seam), structures at border between cerebral hemisphere and diencephalon: cingulate cortex, hippocampus and adjacent cortex, olfactory cortex and bulb |
|--------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1928<br>1929 | P. Bard<br>W.B. Cannon      | hypothalamic theory of emotion: <b>hypothalamus</b> -> event evaluation, control of expression and experience of emotions                                                                                                  |
| 1937         | J. Papez                    | <b>Papez circuit</b> of emotion: cingulate cortex -><br>hippocampus -> hypothalamus (mammillary body) -><br>anterior thalamus -> cingulate cortex                                                                          |
| 1952         | P. MacLean                  | <b>Limbic system</b> (old mammalian brain) as interface between reptilian brain and new mammalian brain, includes prefrontal cortex and amygdala.                                                                          |
| 1957         | B. Millner<br>W.B. Scoville | Patient H.M: identification of <b>medial temporal lobe</b><br>structures as substrate of declarative memory -> a core<br>component of the limbic system becomes the major target of<br>cognitive neuroscience.             |

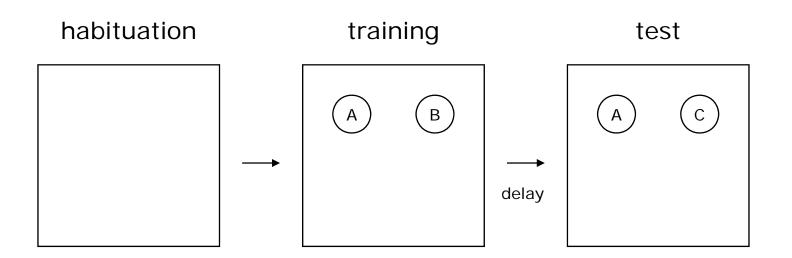
## Components of the limbic system




# Theories of hippocampal function - history

| 1888         | S. Brown<br>H. Schäfer      | early report of forgetfulness in a monkey with large bilateral temporal lobe lesions                                   |  |  |
|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| until the 19 | 30s                         | prevailing view of hippocampus as part of the olfactory system                                                         |  |  |
| 1937         | J.W. Papez                  | component of Papez circuit of emotion                                                                                  |  |  |
| 1938         | R. Jung<br>A. Kornmüller    | discovery of hippocampal EEG theta rhythm in rabbits,<br>temporally linked to desynchronization of cortical EEG        |  |  |
| 1957         | W. Scoville<br>B. Milner    | bilateral surgical lesions of medial temporal lobe associated with global amnesia in several patients including H.M.   |  |  |
| 1960s        | R. Isaacson<br>D. Kimble    | lesion studies fail to model amnesia in monkey or rats, but show deficits of exploration and behavioral disinhibition. |  |  |
| 1971         | T. Hirano<br>O. Vinogradowa | first implantations of microelectrodes to record single unit activity in the hippocampus of freely moving animals      |  |  |
| 1973         | T.V.P. Bliss<br>T. Lomo     | hippocampal long-term potentiation                                                                                     |  |  |
| 1978         | J. O'Keefe<br>L. Nadel      | the hippocampus as a cognitive map                                                                                     |  |  |
| 1982         | J. Gray                     | septo-hippocampal theory of anxiety, updated 2000                                                                      |  |  |
| 1992         | S. Tonegawa<br>E.R. Kandel  | first papers using genetically modified mice to investigate cellular mechanisms of cognitive function                  |  |  |

# Theories of hippocampal function - memory


| Declarative<br>memory theory                         | <ul> <li>Hippocampus is part of a medial temporal lobe memory system that selectively mediates declarative memory in a time-limited manner.</li> <li>founded on global amnesia syndrome in human patients</li> <li>primate models of amnesia: DMTS and DNMTS tasks</li> <li>rodent models: object recognition / discrimination</li> </ul> |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Episodic<br>memory theory                            | The hippocampus is a structure that mediates episodic memory, the recall of discrete events via mental time travel. Episodic-like memory in animals is the memory of "what", "when" and "where".<br>- founded on global amnesia syndrome in human patients<br>- bird model: what-where-when, rodent model: order of events                |
| Cognitive<br>map theory                              | The hippocampus harbors the locale system, a memory system that<br>represents stimuli as a cognitive map with respect to an allocentric spatial<br>framework and permits navigation in space.<br>- founded on single unit recordings in freely moving animals<br>- rodent models: radial maze, water maze, Barnes maze                    |
| Configural,<br>relational,<br>contextual<br>theories | The hippocampus is a learning system that deals flexibly with overlapping sets<br>of stimuli in which the meaning of each stimulus may depend on temporal<br>sequence or presence of other stimuli.<br>- roots in instrumental and classical conditioning<br>- rodent: contextual conditioning, transitive inference, paired associate    |

# Declarative and nondeclarative memory

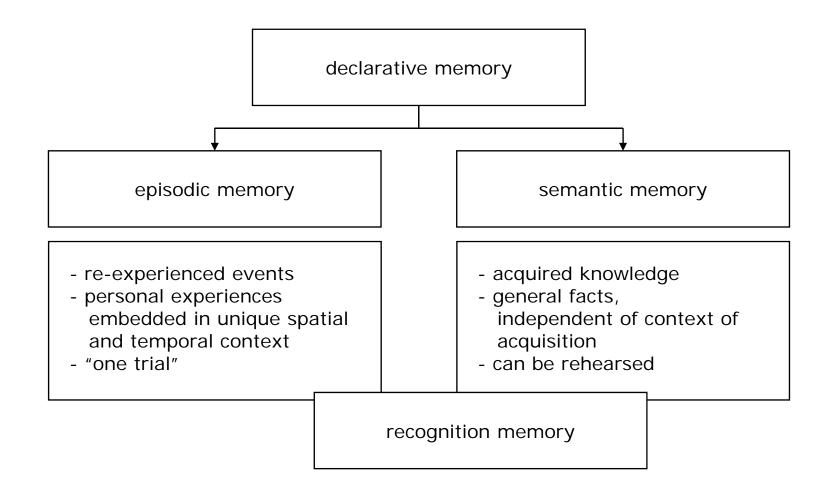


Often activated simultaneously!

# Object recognition / discrimination

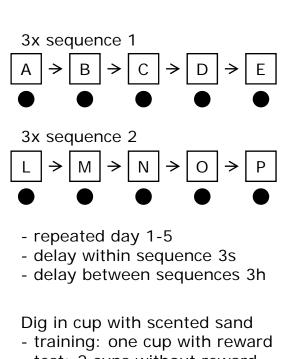


Measures of recognition memory:


- time exploring object
- exploration of A test < training
- exploration during test A<C

Control measures:

- activity during habituation
- total exploration time
- exploration A = B during training


Variants: more objects, multiple training trials, object displacement, social stimuli

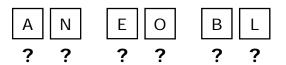
# Types of declarative memory



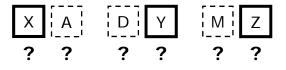
### Odor sequence task

Training



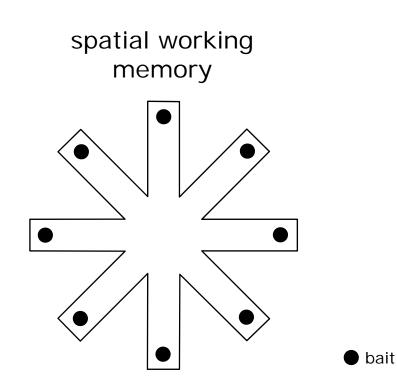

- test: 2 cups without reward

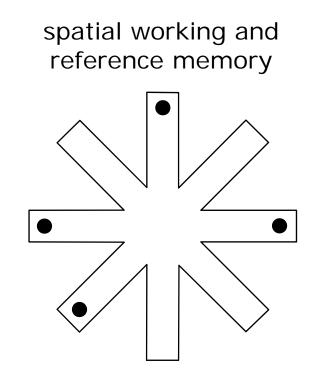
#### Choice tests


Within sequence: order (requires hippocampus)

| А |   | C | В | P | L |
|---|---|---|---|---|---|
| ? | ? | ? | ? | ? | ? |

Between sequence: relative recency (no discrimination)





odor novelty: (hippocampus not required)



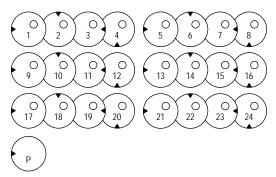
DeVito and Eichenbaum H, J Neurosci 31:3169,2011

Radial-maze tasks

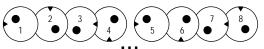




#### Errors:


- working memory = reentry after bait collect
- procedural (bait or arm neglect)

#### Errors:


- working memory = reentry after bait collect
- reference memory: entry to unbaited arm
- procedural (bait or arm neglect)

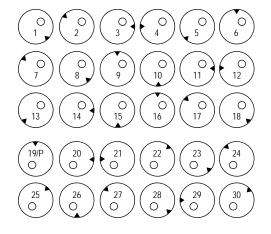
#### Water-maze tasks

Place navigation task with massed training



Cue navigation task with massed training




control task for sensory motor performance

O hidden platform

• visible platform

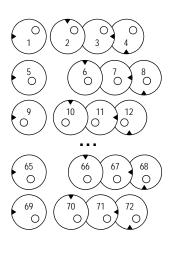
release point

Place navigation task with spaced training and reversal

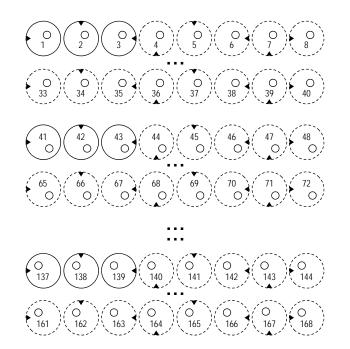


Training parameters:

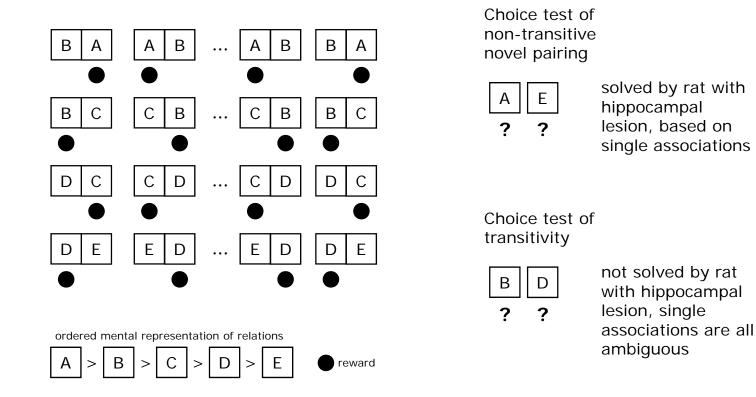
- escape latency
- swim path
- cumulative search error
- Whishaw's error


Probe trial parameters:

- quadrant time
- annulus crossings
- zone time
- proximity


Morris et al, Nature 297:681,1982

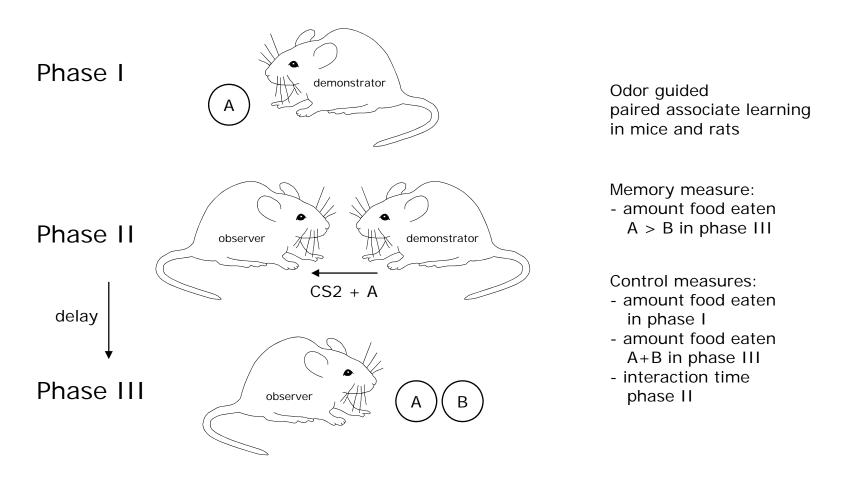
#### Water-maze tasks


Matching to place task with varying delays



 hidden platform
 visible platform
 release point
 trials given until criterion met Serial reversal task with training to criterion




### Transitive inference task



Odor discrimination training

#### Dusek and Eichenbaum, PNAS 94:7109,1997

### Social transmission of food preferences



Winocur, Behav Brain Res 38:145, 1990

Advanced Course in Neuroscience - Limbic System I - 20.04.2015

## The hippocampus beyond memory

Lesions of the hippocampus or other experimental manipulations that affect hippocampal function in rodents have also effects that are unrelated to memory function:

| Exploration<br>Novelty | <ul> <li>hyperlocomotion in novel or aversive environment</li> <li>delayed exploration, delayed or no habituation</li> <li>increased exploratory activity toward new objects</li> </ul>                                                  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shuttlebox             | - facilitated active avoidance learning                                                                                                                                                                                                  |
| Anxiety                | <ul> <li>reduced anxiety-related parameters in anxiety tests</li> <li>increased center time in open field test</li> <li>increased open arm entries in plus maze test</li> <li>reduced dark time in light-dark transition test</li> </ul> |
| Perseverance           | <ul> <li>inability to suppress inadequate spontaneous or learned responses</li> <li>tendency to develop stereotypical behavior</li> <li>reduced spontaneous alternation on T-maze</li> </ul>                                             |
| Nesting<br>Burrowing   | <ul> <li>reduced nest quality, more unused nesting material</li> <li>reduced burrowing activity in burrowing test</li> </ul>                                                                                                             |
| Barrowing              | - reduced barrowing activity in barrowing test                                                                                                                                                                                           |