Regional cerebral 2-deoxyglucose uptake during open-field exposure
in mice: metabolic patterns of habituation and exploratory activity
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The locomotory pattern of an animal introduced into a novel, open
arena, depends on a mixture of motivational drives, from anxiety to
exploratory biases, which have proven difficult to disentangle, even
by means of pharmacological tools.

In humans, a superiority of the right hemisphere for the decoding
of (mostly negative) emotions has been repeatedly reported. In
laboratory rodents, neurochemical asymmetries in the neocortex
and basal ganglia have been sometimes detected, in association

We use here a metabolic approach to dissect the variability of
responses to the exposure to an open-field, in order to understand
the neural circuitry underlying three different components of this
form of spontaneous behaviour: ambulation, thigmotaxis, and
habituation

,) Are there correlations between these components
$ of open-field behavior, and the metabolic
activation of any brain region?

with « emotional » behavioural traits, such as anxiety and

I impulsivity.

Does any of these three components of openfield
behaviour (ambulation, thigmotaxis, habituation)
entail a lateralised activation of any brain
region?

I
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YES. Habituation, measured as the difference in the
amount of locomotion between the first and the last 7
minutes of exposure to the open-field (in a time lapse of
42 minutes) is strongly and negatively correlated to the
metabolic activation of the lateral amygdala, measured
as relative incorporation of 14C-2-deoxy-D-glucose

YES. Thigmotaxis is correlated with the degree of

asymmetry in the activation of limbic cortex and

amygdala: the higher the frequentation of the central

part of the arena, the higher the activation of the right

hemisphere.

CAVEAT! The scatterplots show that these correlations are
mostly contributed by the mice with callosal agenesis
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CONCLUSIONS

The amount of locomotion is not clearly associated to bilateral or asymmetrical activation of any brain region. Thus, it remains a behavioural measure
of difficult interpretation

OThe negative correlation between metabolic activation of the amygdala and habituation suggests that an intrasession increase in locomotion does NOT
imply a decline in anxiety!

[JCorrelations between asymmetries in 2-deoxyglucose uptake in (mostly limbic) cortical fields and distance from the walls suggest opposite
contributions of the two hemispheres in the generation of a behavioral response, and indicate measures of thigmotaxis/agoraphobia as meaningful
behavioural markers of neurobiologically different coping strategies



