Regional cerebral 2-deoxyglucose uptake during open-field exposure in mice: metabolic patterns of habituation and exploratory activity

Fulvio MAGARA *1, Egbert WELKER 1, David P. WOLFER 2, Hans-Peter LIPP 2

* Centre de Neurosciences Psychiatriques de Cery et ¹Institut de Biologie Cellulaire et Morphologie, Université de Lausanne.

² Anatomisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich

form of spontaneous behaviour: ambulation, thigmotaxis, and habituation Are there correlations between these components

?

of open-field behavior, and the metabolic activation of any brain region?

YES. Habituation, measured as the difference in the amount of locomotion between the first and the last 7 minutes of exposure to the open-field (in a time lapse of 42 minutes) is strongly and negatively correlated to the metabolic activation of the lateral amygdala, measured as relative incorporation of ¹⁴C-2-deoxy-D-glucose

Average relative 2-deoxyglucose uptake		Path tr	Path traveled		distance	Habituation	
				from the walls			
		r	р	r	р	r	р
Supers	structures						
	whole cortex	0.12	0.633	-0.43	0.066	0.34	0.198
	brainstem + diencephalon	-0.26	0.281	-0.32	0.181	0.05	0.843
	whole thalamus (dorsal)	0.40	0.089	0.04	0.874	0.38	0.145
	Amygdaloid complex	-0.27	0.265	-0.26	0.291	-0.54	0.028
	Lateral amygdala	0.15	0.585	-0.13	0.630	-0.73	<0.001
	Septum	-0.07	0.786	-0.26	0.294	0.10	0.708
	Striatum	-0.37	0.116	-0.10	0.700	-0.45	0.080
	Accumbens	-0.20	0.407	-0.34	0.161	-0.37	0.158
Cortica	I regions						
	Hippocampus	0.04	0.885	0.19	0.430	0.01	0.987
	Retrosplenial cortex	0.30	0.219	-0.10	0.701	0.35	0.184
	Cingulate cortex	-0.23	0.340	-0.24	0.317	0.30	0.271
	Perirhinal cortex	-0.21	0.405	-0.38	0.109	-0.30	0.273
	Infrarhinal cortex	-0.05	0.830	-0.50	0.029	-0.10	0.726
	Occipital cortex	-0.01	0.976	0.16	0.526	0.13	0.628
	Temporal cortex	0.02	0.928	0.28	0.257	-0.21	0.450
	Somatosensory cortex	0.20	0.410	-0.52	0.021	0.47	0.067
	Medial parietal cortex	0.23	0.356	-0.21	0.385	0.34	0.200
	Frontal cortex	0.03	0.903	-0.29	0.225	0.57	0.02

and high (bottom) habituation, their corresponding and autoradiograms of brain sections showing the striking difference in metabolic activation of the lateral amygdala (ARROW)

Significance of the correlation by the Spearmann's rank procedure, and by its presence in both groups of animals. Arrows indicate the points corresponding to the mice whose tracks are shown at left

In humans, a superiority of the right hemisphere for the decoding of (mostly negative) emotions has been repeatedly reported. In laboratory rodents, neurochemical asymmetries in the neocortex and basal ganglia have been sometimes detected, in association with « emotional » behavioural traits, such as anxiety and impulsivity.

Does any of these three components of openfield behaviour (ambulation, thigmotaxis, habituation) entail a lateralised activation of any brain region?

?

YES. Thigmotaxis is correlated with the degree of asymmetry in the activation of limbic cortex and amygdala: the higher the frequentation of the central part of the arena, the higher the activation of the right hemisphere.

CAVEAT! The scatterplots show that these correlations are mostly contributed by the mice with callosal agenesis

Asymmetry indices of	Path traveled		Average distance		Habituation	
2-deoxyglucose uptake			from the walls			
	r	р	r	р	r	р
Superstructures						
whole cortex	-0.02	0.924	0.55	0.012*	-0.08	0.785
brainstem + diencephalon	0.18	0.450	0.22	0.376	-0.30	0.291
whole thalamus (dorsal)	0.45	0.050	0.24	0.333	-0.08	0.778
Amygdaloid complex	0.06	0.816	0.03	0.909	0.39	0.156
Lateral amygdala	-0.27	0.305	0.56	0.012	0.34	0.246
Septum	0.03	0.903	0.38	0.109	-0.32	0.257
Striatum	0.48	0.037*	0.40	0.089	-0.07	0.806
Accumbens	0.15	0.554	-0.05	0.848	-0.22	0.443
Cortical regions						
Hippocampus	-0.18	0.469	0.00	0.990	0.11	0.710
Retrosplenial cortex	-0.10	0.673	0.05	0.885	-0.20	0.486
Cingulate cortex	0.06	0.810	0.57	0.009*	-0.07	0.820
Perirhinal cortex	-0.12	0.621	0.63	0.003*	0.06	0.839
Inframinal cortex	0.11	0.656	0.51	0.023*	-0.09	0.742
Occipital cortex	-0.15	0.556	0.14	0.570	0.04	0.881
Temporal cortex	0.03	0.904	0.05	0.856	0.02	0.951
Somatosensory cortex	-0.01	0.965	0.54	0.015*	-0.01	0.983
Medial parietal cortex	-0.23	0.357	0.38	0.113	-0.06	0.839
Frontal cortex	-0.34	0.158	0.52	0.022	-0.10	0.741

Acallosal, high asymmetry

C57BL/6, low asymmetry

CONCLUSIONS

- •The amount of locomotion is not clearly associated to bilateral or asymmetrical activation of any brain region. Thus, it remains a behavioural measure of difficult interpretation
- OThe negative correlation between metabolic activation of the amygdala and habituation suggests that an intrasession increase in locomotion does NOT imply a decline in anxiety!
- Ocorrelations between asymmetries in 2-deoxyglucose uptake in (mostly limbic) cortical fields and distance from the walls suggest opposite contributions of the two hemispheres in the generation of a behavioral response, and indicate measures of thigmotaxis/agoraphobia as meaningful behavioural markers of neurobiologically different coping strategies