COMPLETE GENETIC ABLATION OF CREB IN THE BRAIN IMPAIRS CONDITIONED TASTE AVERSION BUT SPARES SPATIAL MEMORY AND CONTEXTUAL FEAR CONDITIONING

Hans-Peter Lipp¹, Peter Gass², Hans Welzl¹, Günther Schütz³, Theo Mantamadiotis³, and David P. Wolfer¹

¹Institute of Anatomy and Center for Neuroscience, University of Zürich, Switzerland; ³Department of Molecular Biology of the Cell I, German Cancer Research Center, University of Heidelberg, and ² Central Institute of Mental Health Mannheim, Germany

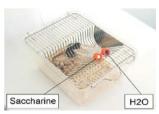
INTRODUCTION

Previous gene targeting studies addressing the role of the transcription factor CREB in mammalian long-term synaptic plasticity and memory were compromised by incomplete deletion of the ß-isoform of CREB. Therefore, we studied conditional knock-out lines with a deletion of all CREB-isoforms in the brain or specifically in the mature forebrain and compared them with earlier data obtained in hypomorphic CREB mutants.

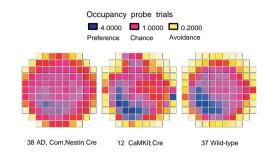
METHODS

Animals

deletion of all CREB-isoforms

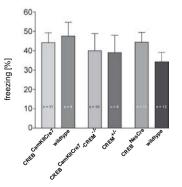

whole brain --> CREBNesCre mice
only mature forebrain --> CREBCamKIICre7 mice

Apparatus
Hippocampus-dependent learning:
Water maze
Contextual fear conditioning (pictured)

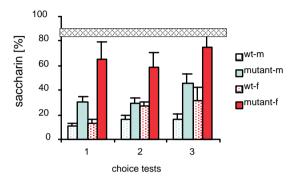

novel context (CS) + foot shock (UCS)

Hippocampus-independent learning: Conditioned taste aversion (pictured)

novel taste (saccharin/CS) + malaise (LiCI/UCS)


RESULTS 'WATER MAZE'

Mutants showed slightly reduced escape performance in the watermaze, reminiscent of the phenotype displayed earlier in the same paradigm by hypomorphic CREB mutants. However, the deficit in the watermaze was unrelated to spatial memory. Most strikingly, CREBCamKIICre7 mice showed normal spatial preference during probe trials (see above).


		All animals N = 87 I-way ANOVA pooled wt, aD, comp, NesCre, CamKilCre	All mutants N = 49 1-way ANOVA 1-way aD, comp, NesCre, CamKilCre	Mutans excl. CamKliCre N = 37 ANOVA aD, comp, NesCre	All animals N = 87 2-way ANOVA int. genotype x CamKliCr
raining	escape latency (s)	p<.0019	ns	ns	ns
	path length (m)	p<.0016	ns	ns	ns
ĕ	search error (m*s)	D<.0015	ns	ns	ns
8	wall hugging (%)	p<.0006	ns	ns	ns
2	% time in trained quadran	t p<.0402	p<.0656	ns	p<.0234
E	% time in trained zone	p<.0017	p<.0226	ns	p<.0121
8	crossing preference (x/m)	p<.0263	p<.0149	ns	p<.0016
pope	proximity (m)	p<.0014	p<.0346	ns	p<.0364
ā.	polar error (*)	p<.0343	p<.0368	ns	p<.0613
N	% time in trained quadran	t p<.0512	p<.0628	ns	p<.0077
probenal	% time in trained zone	p<.0173	p<.0502	ns	p<.0101
ē	crossing preference (x/m	ns	ns	ns	p<.0680
R	proximity (m)	p<.0367	ns	ns	p<.0432
Ĕ.	polar error (°)	p<.0407	p<.0408	ns	p<.0197

RESULTS 'FEAR CONDITIONING'

Contextual fear conditioning was normal in both lines.

RESULTS 'TASTE AVERSION'

Conditioned taste aversion was impaired in male (blue) and even more so in female (red) CREBNesCre mice (solid columns) when compared to the respective wildtypes (dotted columns). In contrast, all mice displayed the same preference for the saccharin solution when consumption of it was not followed by malaise (gray bar).

CONCLUSIONS

These data of CREBCamKIICre7 and CREBNesCre mutants imply that CREB

- (i) is not essential for assumedly hippocampus-dependent learning and memory in the mouse;
- (ii) might be of relevance in extrahippocampal regions, and (iii) possibly undergoes partial functional compensation in the adult brain through upregulation of the associated transcription factor CREM or other mechanisms.

Further,

(iv) both CREBCamKIICre7 and CREBNesCre mutants also show normal hippocampal late-LTP and late-LTD (see Balschun et al., Soc. Neurosci. Abstr. 26, 2000), and (v) the more severe deficits of the earlier hypomorphic mutants might have been caused by low prenatal levels of CREB.

Supported by Swiss National Science Foundation, BIO4CT980297/BBW98.0125 and NCCR "Neural Plasticity and Repair"