

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ZNZ MD/PhD Neuroscience Course, Module BIO628 Thu 01.06.2017 Data analysis and presentations: Examples from basic statistics

David P. Wolfer MD

Institute of Anatomy, University of Zurich Institute for Human Movement Sciences and Sport, ETH Zurich http://www.dpwolfer.ch davidp.wolfer@.uzh.ch, dwolfer@ethz.ch

MOUSE BEHAVIORAL TESTING

fourth edition

BIOSTATISTICS

THE BARE ESSENTIALS

Wahlsten D Mouse Behavioral Testing Academic Press, 1. edition, 2011 Norman GR, Streiner DL Biostatistics, the bare essentials BC Decker, 4. edition, 2014

Sampling

Mean, variance and standard deviation

Effect size

estimated true effect size, effect size, population sample $d = \Delta M/S_{pooled}$ $\delta = \Delta \mu / \sigma$ t-test 0.2 = small0.5 = medium0.8 = large σ^2 between groups S^2 between groups $\omega^2 = -$ ANOVA $\eta^2 = -$ S² total σ^2 total 5% = small20% = large

Hypothesis testing 1

Sample size for t-test

	Α	В	С	D	E	F	GH	1	J	К	L	М
1	2 gr	oups: n	& Pow	er to d	etect &	5 > 0 wh	en Null is	δ=0				
2	Using Wahlsten's (1991) eqn (5) $n = 2C_{\alpha,\beta}/\delta^2 + 2$											
3					δ =	1.000			N	ote: δ =	(μ ₁ - μ ₂)	/σ
4	For one-tailed test of null hypothesis using t test General result											
5	Type I error (α)	Type II error (β)	Power (%)	Z _α 1-tail	Ζ _{1-β}	2C _{α,β}	n per group	Rounded up			To do calculatio size fror	a quick in of effect m means:
6	0.05	0.05	95	-1.645	1.645	21.644	23.644	24			μ1=	15.000
7	0.05	0.1	90	-1.645	1.282	17.128	19.128	20			μ _{2 =}	20.000
8	0.05	0.2	80	-1.645	0.842	12.365	14.365	15			σ=	4.500
9	0.01	0.05	95	-2.326	1.645	31.541	33.541	34			δ =	-1.111
10	0.01	0.1	90	-2.326	1.282	26.034	28.034	29				
11	0.01	0.2	80	-2.326	0.842	20.072	22.072	23				
12	0.001	0.05	95	-3.090	1.645	44.842	46.842	47				
13	0.001	0.1	90	-3.090	1.282	38,225	40,225	41				
14	0.001	0.2	80	-3.090	0.842	30.919	32,919	33				
15												
16	For tw	For two-tailed test of null hypothesis using t test General result										
17	Type I error (α)	Type II error (β)	Power (%)	Z _{α/2} 2- tail	Ζ _{1-β}	2C _{α,β}	n per group	Rounded up				
18	0.05	0.05	95	-1.960	1.645	25.989	27.989	28				
19	0.05	0.1	90	-1.960	1.282	21.015	23.015	24				
20	0.05	0.2	80	-1.960	0.842	15.698	17.698	18				
21	0.01	0.05	95	-2.576	1.645	35.628	37.628	38				
22	0.01	0.1	90	-2.576	1.282	29.759	31.759	32				
23	0.01	0.2	80	-2.576	0.842	23.358	25.358	26				
24	0.001	0.05	95	-3.291	1.645	48.716	50.716	51				
25	0.001	0.1	90	-3.291	1.282	41.808	43,808	44				
26	0.001	0.2	80	-3.291	0.842	34,149	36,149	37				
20	0.001	0.2	00	5.251	0.042	34.145	50.145					

3 bad consequences of low power

high probability to miss true effects

tendency to overestimate effect size (selection effect)

lower positive predictive value

Nat Rev Neurosci 14:365, 2013 Power failure: why small sample size undermines the reliability of neuroscience

Hypothesis testing 2

4 caveats regarding the interpretation of a

a is not a measure of effect size.

If a is larger than the rejection threshold, this is no prof that Ho is true. Under low power conditions, negative test results are inconclusive! special statistics are needed to demonstrate equivalence.

a does not tell us how likely it is that the effect is real if the test tells us to reject Ho. For this we need the positive predictive value (PPV).

a is only valid under the assumption that only one test is done to test Ho: with N tests true type-I error probability = $1-(1-a)^{N}$ Example: 2 Tests at 5% $1-0.95^{2} = 9.8\%$

Nat Rev Neurosci 14:365, 2013 Power failure: why small sample size undermines the reliability of neuroscience Nature 506:150,2014 *Statistical errors*