

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mouse models of human (nervous system) disease

David P. Wolfer Institute of Anatomy, University of Zurich Institute of Human Movement Sciences and Sport, D-HEST, ETH Zurich

Block Course BME342 Functional Neuroanatomy, Wed 19.10.2016

Outline

- Introduction
 - purpose and validity of models
 - ethical considerations, 3Rs principle
- Mouse models of nervous system disease
 - techniques to create mouse models
 - diseases modeled in mice

- Behavioral tests for mice
 - overview of tests
 - disease-typical behavioral changes
- Problems and developments
 - failure of translation, reproducibility crisis
 - endophenotypes, optogenetics, homecage systems
- Examples of behavioral tests
 - rotarod, light-dark transition, elevated O-maze, spontaneous T-maze alternation
 - 8-arm radial maze, IntelliCage

Purpose and validity of disease models

- *Models, what for and why?*
 - understand (normal function and) disease mechanisms and pathogenesis
 - develop disease prevention, diagnostics, therapy: translation bench to bedside
 - reductionistic approach: simple question, optimal experimental design, maximal control of conditions
 - analyses and experimental manipulations that are technically or ethically impossible in humans
- Levels of analysis and methods
 - cellular-molecular, tissue-organ, system-organism
 - genetics, biochemistry, omics
 - morphology, physiology, imaging
 - clinical symptoms, behavior, survival
- Types of models
 - cell, tissue, organ culture
 - induced pluripotent stem cells and organoids
 - animal models: vertebrate and invertebrate
 - simulation: mathematical and computer models, robotics

- *Model validity*
 - construct validity: model reproduces disease mechanism and important aspects of pathogenesis
 - face validity: model reproduces clinical disease symptoms that are observed in human patients
 - predictive validity: model responds to therapeutic intervention in the same way as human patients
- Ethical considerations, 3Rs principle
 - Use of vertebrae models is regulated, requires a license and needs ethical justification: expected benefit for patients (human or animal) > harm to experimental animals (Güterabwägung)
 - *Replace: avoid using animals whenever possible, use simplest species possible*
 - *Refine: minimize pain, suffering, distress or lasting harm improve animal welfare: optimal methods and well trained experimenters*
 - *Reduce: smallest possible (but sufficient!) number of test animals (definition of relevant effect size, power calculation, optimized experimental design)*

Animal model species

- Invertebrates
 - Caenorhabditis elegans: small, very simple nervous system (synaptic and circuit plasticity, neurodevelopment, aging research)
 - Aplysia californica: simple and large nervous system (synaptic and circuit plasticity, mechanisms of learning and memory)
 - Drosophila melanogaster: small, elaborate behavioral repertoire, powerful genetic tools (circuit analysis, disease genetics, e.g. alcohol abuse)
- Vertebrates
 - zebrafish: small strongly visual and social vertebrate (increasingly important as model of nervous system disease and neurodevelopment)
 - rat: similar to humans, rapidly reproducing, easy to handle, brain larger than in mouse (classical model animal in experimental psychology, lesion studies)
 - mouse: similar to human, strain diversity, efficient tools for genetic manipulation (mouse models for virtually all types of human disease)
 - sheep & pig: comparable to humans in size and weight (osteoarthritis, experimental heart surgery)
 - dog: developed social cognition, breed diversity (cognitive research, behavior genetics, disease genetics)
 - primates: brain and immune system most similar to humans (infectious disease, higher cognitive function)

Techniques to create mouse models

- Forward genetics: phenotype to gene
 - selective breeding: comparison of classical lab strains (fancy mice), association studies based on crosses of lab strains, ad hoc selective breeding
 - random chemical mutagenesis: selection of relevant phenotypes to identify responsible genes
- *Reverse genetics: gene to phenotype*
 - random insertion transgene: gain of function, dominant negative, expression of Cre-recombinase to activate conditional alleles
 - targeted mutagenesis by homologous recombination in ES cells: constitutive knockout (null mutation) or knockin (e.g. point mutation), conditional ("floxed") alleles to be activated by Cre-recombinase
 - Gene editing using CRISPR/Cas9: rapidly developing technique suitable for all species including humans
 - viral vectors for gene delivery: adenovirus (not integrating), retrovirus (integrating), rabies (circuit tracing)

- Non-genetic models
 - trauma, mechanical or chemical lesion, irradiation
 - *substance application: pharmacology, toxicology*
 - environmental manipulation: enrichment, acute or chronic (unpredictable) stress, social stress
 - infection and immune challenge: models of infectious and autoimmune disease (e.g. EAE = experimental autoimmune encephalitis as model of multiple sclerosis), immune challenge during pregnancy as model of neurodevelopmental disorder
- Combined models
 - dual hit models for gene x environment interactions: disease associated mutations + environmental enrichment, stress or developmental challenge
 - testing of drugs or treatments in disease models
 - pharmacologically controllable mutations (doxycycline, tamoxifen)
 - chemogenetic models using DREADDs (designer receptors exclusively activated by designer drugs)

- Neurological disease
 - Stroke: medial cerebral artery occlusion (MCAO), multiple sclerosis: EAE
 - Huntington's (monogenic disease, loss of striatum neurons): R6 mice express human mutant huntingtin as transgene driven by human huntingtin promoter
 - Parkinson's (mostly sporadic, loss of dopamine neurons, aggregation of αSyn may be mechanism): αSyn, A53T αSyn transgenic mice, DA-neuron destruction by MPTP or 6-OHDA
 - ALS (amyotrophic lateral sclerosis, loss of motor neurons, mostly sporadic, 40 associated genes): mice with ALS-linked mutations (SOD1G93A transgenic, C9orf72 BAC, UBQLN2P497H transgenic mice)

• Dementia

- Alzheimers disease (mostly sporadic): expression of human mutant genes as transgene, alone (PDAPP, TG2576, APP23, TgCRND8, J20), with mutant PS1 and/or TAU (APP/PS1, 5xFAD, 3xTg-AD).
- Frontotemporal dementia (FTD) linked to ALS

- Intellectual disability
 - Down syndrome: mouse orthologs of human chromosome 21 genes distributed on mouse chromosomes 10-16-17 → subsets expressed as transgenes (Ts65Dn mouse, BAC transgenics)
 - single gene mutations (syndromic or non-syndromic): KO of ortholog mouse gene (Rsk2/Coffin-Lowry syndrome, NONO, Gdi1, αPix/Arhgef6)
- Learning disability
 - ADHD (attention deficit hyperactivity disorder, high heritability, risk genes are many, have small effects and act in combination, diagnosis based on clinics/behavior): genetic (DAT-KO, mouse expressing DAT Val559 variant) manipulations leading to hyperactivity, pharmacological models: stimulants, drugs modifying serotonin transmission
 - Dyslexia (high heritability, many risk genes): mice with mutated orthologs of risk genes (Dcdc2-KO, Dyx1c1-KO, Cntnap2-KO)

• Schizophrenia

- high heritability, many risk genes with small effect
- diagnosis based on behavior/symptoms (DSM-5)
- genetic models: mutation or KO of risk genes (Shank3, DISC1 = disrupted-in-schizophrenia-1, neuregulin-1, calcineurin), genetically induced transmitter imbalance (NR1neo mouse, D2R transgenic mouse)
- neonatal ventral hippocampal lesion, dual hit models (e.g. complexin2-KO x brain trauma), pharmacological models
- Autism spectrum disorder
 - high heritability, many risk genes with small effect that are often shared with schizophrenia
 - diagnosis based on behavior/symptoms (DSM-5): deficient social communication, repetitive behavior
 - Fragile X syndrome (lack of FMRP, autism, intellectual disability, other deficits): Fmr1-KO mouse
 - other genetic models: mutation or KO of risk genes (neuroligin-1,3,4; shank-1,2,3, neurexin-1)

- Mood disorders
 - heritability less than schizophrenia, little knowledge about risk genes, poorly understood relation to stress and adverse life events
 - diagnosis based on behavior/symptoms (DSM-5)
 - major depression: traditional "models" based on predictive validity (forced swim / tail suspension test, learned helplessness), stress-based models (chronic unpredictable stress, social defeat stress), olfactory bulbectomy, forward genetic models
 - *bipolar disorder (mania ↔ depressive episodes): no true model, manipulations leading to hyperactivity*
 - anxiety disorders (phobia, posttraumatic stress disorder, panic disorder): see lecture Sophie Masneuf
- Substance abuse
 - alcohol, nicotine, opiates, stimulants
 - models based on substance exposure: mice get addicted in ways similar to humans
 - forward genetic models to identify genes & mechanisms of resilience and susceptibility

Behavioral tests for mice

- Spontaneous behavior
 - appearance, posture and general health
 - species-typical behaviors: nest-building, burrowing, spontaneous T-maze alternation
- Sensory-motor function
 - hotplate / tail-flick test, shock reactivity, van Frey filaments, acoustic startle, pre-pulse inhibition, optokinetic reflex, vestibulo-ocular reflex, visual cliff test, optomotor drum, visual discrimination tests, chocolate search task, odor and taste discrimination
 - rotarod, beam walking, grip test, reaching tasks
 - water-maze cue navigation: sensory and motor control test for water-maze place navigation task
- Ingestive behaviors
 - metabolic cages, home cage systems
- *Exploration, anxiety and fear*
 - open field, light-dark transition, plus and O-maze, Vogel conflict test, novelty suppressed feeding
 - fear learning, fear extinction

- *Learning and cognitive function*
 - spatial learning: water-maze place navigation; dry mazes: radial-maze, T-maze, Hebb-William-maze
 - associative learning: cued / contextual / trace fear (Pavlovian) conditioning, operant conditioning
 - executive function: 5-choice serial reaction time task (motor impulsivity, attention), delay discounting tasks (choice control, cognitive impulsivity)
 - visual discrimination: touchscreen learning
- Motivation, reward
 - operant conditioning, drug self administration
 - *choice / preference tests, progressive ratio schedule, cognitive bias (ambiguous cues), gambling task*
- Social and reproductive behavior
 - 3-chamber test: sociability, social memory
 - resident intruder test: male (and female) aggression, tube dominance test
 - sexual and maternal behavior, pup retrieval test
 - ultrasonic vocalizations in pups and adult males

Overlapping! behavioral profiles of nervous system disease models

- Selection of tests
 - *individual test results depend on multiple factors, converging evidence from multiple tests needed*
 - design of test batteries: presence and absence of changes equally important to demonstrate specificity
- Dementia & intellectual disability
 - similar behavioral profile, different time course
 - deficits in tests of learning & executive function, focus on hippocampus-dependent tests (long- and shortterm spatial memory, contextual memory)
 - impaired species-typical and exploratory behaviors
- Schizophrenia
 - positive symptoms: hyperactivity
 - negative symptoms: anhedonia, social withdrawal
 - cognitive symptoms: specific working memory deficit, motor impulsivity, attentional deficits
 - impaired prepulse inhibition of acoustic startle
 - behavioral response to neuroleptic drug: additional criterion, alone not sufficient

- Autism
 - social symptoms: social neglect in 3-chamber test, reduced ultrasonic vocalization
 - repetitive behavior & restricted interests: impaired reversal learning, stereotyped self grooming
- Depression
 - psychological symptoms: reduced activity and exploration, anhedonia, cognitive bias (negative interpretation of ambiguous cues), anxiety
 - social symptoms: social withdrawal, low sex drive
 - physical symptoms: disturbed sleep or food intake
 - *improvement by (chronic!) antidepressant drug: additional criterion, alone not sufficient*
- Bipolar disorder
 - hyperactivity alone does not make a manic mouse
 - long-term fluctuations of motivation, activity and sleep: behavioral monitoring in the homecage?
 - improvement of phenotype by chronic lithium

- *Problems disappointed public*
 - "translation crisis": translation less successful in neuroscience than in other domains (e.g. cancer)
 - "reproducibility crisis": 10% success in reproducing experimental results (not only in neuroscience)
 - scientists promise too much and make too many mistakes (like politicians)
- Common mistakes
 - mice are not small humans: overly simplistic and anthropocentric interpretation of behavior, false face validity of models – mice are not small rats either
 - overemphasis of predictive validity of models
 - flawed study design: insufficient power, environmental bias, bias by genetic background
 - pressure to succeed \rightarrow biased / selective observation
 - inappropriate use and interpretation of statistics: multiple testing, inflated N, misinterpretation of pvalues (misjudgment of negative / positive predictive validity)

- Endophenotypes
 - emphasis moved from system to circuit/organ level: bridge between construct and face validity, more similarity between mice and human patients
 - electrophysiology, EEG, prepulse inhibitionimaging, neurochemistry
- Optogenetics
 - expression of optical calcium sensors
 - expression of artificial genes that render particular types neurons responsive to light, used for silencing or stimulation
 - integration of cellular, circuit and behavioral analysis
- Behavioral testing in the home cage
 - higher throughput, continuous long-term observation
 - *improves animal welfare: familiar (and social) environment, no handling by humans*
 - more standardization, less impact of lab environment
 - test development and validation still in progress

Rotarod

- Apparatus and Procedure
 - elevated rotating rod / drum with accelerating rotation speed (0-40 RPM over 5 min)
 - *mice avoid falling off by walking synchronously with rotating rod, sometimes grab the rod and rotate with it*
- Measures
 - time to fall off / speed when falling off
 - time to rotate / speed at first rotation
- Interpretation
 - measures motor coordination, to lesser degree muscle force. Improvement over time can be used as measure of motor skill learning.
 - confounds: motivational changes, body weight changes (lighter mice are better), differences in diameter, surface and material of rod

Light-dark transition test

- Apparatus and Procedure
 - dark and brightly illuminated chamber connected by small opening. Conflict between light avoidance and exploratory drive, forced exploration test
 - spontaneous behavior observed
- Measures
 - time in dark
 - number of transitions, distance traveled
 - risk assessment postures, rearing / leaning, grooming
- Interpretation
 - *dark time: anxiety decreased by anxiolytic drugs* (*classical test for drug screening*)
 - rearing, leaning: exploratory drive
 - confounds: blindness, altered activity, freezing in brightly illuminated chamber

Elevated O-maze

- Apparatus and Procedure
 - elevated circular runway, 2 90° sectors protected by sidewalls, 2 90° sectors open
 - elevated plus maze: original cross-shaped configuration with central platform and corners to retract to
 - spontaneous behavior observed
- Measures
 - % time in open/closed sectors, % entries to open sectors, number of entries to closed sectors, total distance moved
 - free and protected (with body between sidewalls) head dips, risk assessment postures (stretch attend & retract)
- Interpretation
 - open sector time: anxiety increased by anxiolytic drugs (classical test for drug screening)
 - closed sector entries, distance moved: activity
 - head dips: measure of exploration
 - confounds: inactivity, freezing on open sectors, stereotyped head dipping

Spontaneous T-maze alternation

• Apparatus and Procedure

- T-shaped corridor with doors
- sample trial with confinement to chosen arm after choice, free choice trial after short delay
- variant: continuous free running in an Y-maze
- not to be confounded with rewarded T-maze tasks assessing discrimination, spatial or habit learning
- Measures
 - rate of alternation over repeated trial pairs
 - choice latency
- Interpretation
 - alternation depends on exploratory drive and spatial working memory
 - highly sensitive to hippocampal lesions
 - confounds: altered activity, loss of motivation

Radial-maze

- Apparatus and Procedure
 - 8-arm maze, small invisible baits at end of all or part of the arms, salient distal room cues
 - food deprived mice (kept at 85% of normal body weight) collect baits, walking freely or confined to central platform between choices

• Measures

- working memory errors: reentry to emptied arm
- reference memory errors: entry to unbaited arm
- neglected and omitted baits, locomotor activity, choice patterns
- Interpretation
 - hippocampus-dependent spatial task, may differentiate between working and reference memory deficits
 - confounds: lack of motivation, motivation, reduced tolerance of food deprivation, use of local olfactory cues, stereotyped choice patterns

IntelliCage

- Apparatus and Procedure
 - large home cage with 4 operant learning corners giving access to 2 drinking bottles each. Food available at libitum.
 - up to 16 RFID tagged mice can be tested per cage in a large variety of fully automated computer controlled protocols

• Measures

- individually recorded events: corner visits, nosepokes, licking
- ambient variables: light, temperature

• Interpretation

- depends on protocol / task: spontaneous behavior, hippocampusdependent learning, anxiety, motivation and anhedonia, impulsivity
- confounds: cheating by imitation in learning tasks, competition and fighting of male mice, corner hugging, poking with both ends of the body, two mice entering corner at the same time

