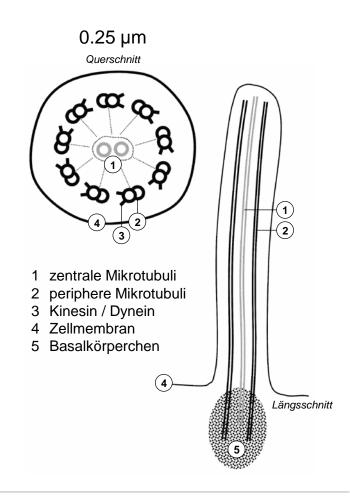
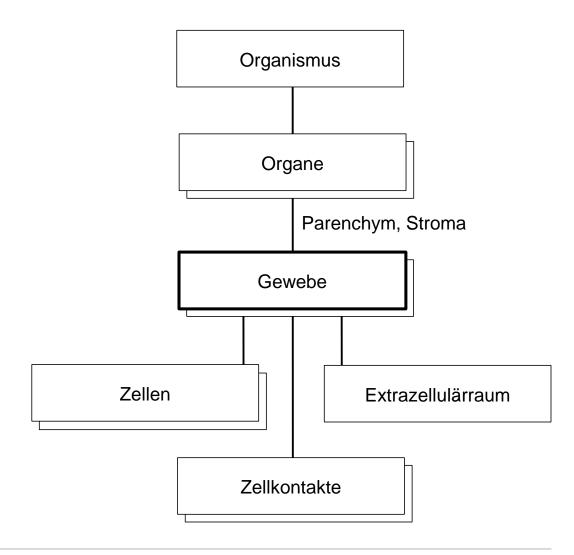

Gewebelehre Zellfortsätze, Binde- und Stützgewebe

David P. Wolfer Institut für Bewegungswissenschaften und Sport, D-HEST, ETH Zürich Anatomisches Institut, Medizinische Fakultät, Universität Zürich

376-0151-00 Anatomie und Physiologie I, Do 21.09.2017 09:45


Zellfortsätze I

- Zellfortsätze
 - Ausstülpung der Zellmembran, Zytoskelett liefert Binnengerüst
 - Binnengerüst: Aktin oder Mikrotubuli
- langlebige Fortsätze mit Binnengerüst aus stabilem Aktin
 - geringe bis mässige Beweglichkeit
 - Mikrovilli (meiste Zellen)
 - Bürstensaum: lang, parallel, dicht (Darmschleimhaut, Nierenkanälchen)
 - Stereozilien: lang, verzweigt (Samenleiter, Nebenhodengang, starr: Innenohr)
- kurzlebige Fortsätze mit Binnengerüst aus instabilem Aktin
 - ausgeprägte Beweglichkeit
 - Aktin Polymerisation und Depolymerisation
 - Filopodien (fadenförmig)
 - Lamellipodien (segelförmig)
 - Phagozytose, Zellwanderung,
 Wachstumskegel für Nervenfaserwachstum


Zellfortsätze II

- Zellfortsätze mit Binnengerüst aus Mikrotubuli: Zilien
 - periphere (+zentrale) Mikrotubuli: Axonema, molekularer Motor durch Interaktion mit Dynein oder Kinesin
 - Basalkörperchen (Kinetosom) abgeleitet von Zentriol: Organisator und Verankerung
- primäre Zilien (fast alle Zellen)
 - *Axonema 9+0*
 - Mikrotubuli + Dynein oder Kinesin: molekularer Motor für Proteintransport (zB Anreicherung von Rezeptoren)
 - Zell-Antenne, Steuerung Differenzierung & Wachstum. Sinnesorgane: olfaktorische Neurone, Stäbchen und Zapfen, Innenohr
- Kinozilien und Flagellen
 - *Axonema* 9+2
 - Mikrotubuli + Dynein: Motor für Zilienschlag
 - Zilien: Atemwege, Eileiter, Ductuli efferentes, Ependym
 - Flagellum: Spermien

Gewebe

- Mehrzellliger Organismus
 - Aufgabenteilung, Spezialisierung der Zellen
- Gewebe = Verband sesshafter Zellen, Funktionsgemeinschaft
 - gleichsinnige Differenzierung
 - Zellen nicht immer gleich aussehend: Subspezialisierung, Lebenszyklus
 - Zusammenhalt und Kommunikation: Extrazellulärraum, Zellkontakte
- Organe bestehen aus mehreren Geweben
 - Parenchym: organspezifisch und funktionstragend
 - Stroma: Gerüst, Ernährung (Blutgefässe), Abwehr

Gewebefamilien / Grundgewebe

- grosse Gewebevielfalt durch Zelldifferenzierung und Spezialisierung
 - Zusammenfassung zu 4 Grundgewebe mit gemeinsamen Eigenschaften
 - unterscheidbar durch Funktion, Zellform, Anteil Extrazellulärraum
 - Grundgewebe weiter unterteilbar

	Anteil EZR	Funktionen
Binde- und Stützgewebe	+ bis +++	Struktur, Versorgung, Speicherung, Abwehr, Stromabildung
Epithelgewebe	(+)	Oberflächen, Drüsen, Rezeptoren, Parenchymbildung
Muskelgewebe	(+) bis +	Kontraktion, mechanische Arbeit
Nervengewebe	(+)	Transport, Verarbeitung und Speicherung von Informationen

Binde- und Stützgewebe, Zusammensetzung

- fixe Zellen
 - lokale Entstehung aus Vorläuferzellen, ev. Vermehrung durch Teilung
- freie Zellen
 - ein/auswandernde Zellen des Immunsystems
 - residente Makrophagen: Einwanderung im Embryo, lokale Vermehrung (Alveolarmakrophagen, von Kupffer-Zellen, Langerhans-Zellen, Nierenmakrophagen, Osteoklasten, Mikrogliazellen)
- extrazelluläre Matrix
 - geformte Bestandteile: Fasern
 ungeformte Bestandteile
 Bildung und Unterhalt
 durch fixe Zellen
- Fasern
 - kollagen: unverzweigt, zugfest, Wellenform, Scherengitter
 - elastisch*: verzweigt, 150% dehnbar, Netz- und Membranbildung
- ungeformte EZM Bestandteile
 - Proteoglykane*: Wasserbindung, Viskosität, vernetzen Fasern
 - Adhäsionsproteine: Zusammenhalt EZM und Verbindung mit Zellen
 - * Alterung: Abnahme der Proteoglykane und elastischen Fasern

Bindegewebe
Fettgewebe
Knorpel Stützgewebe
Knochen

Zellen

fix, sesshaft frei, mobil

Unterhalt EZM Abwehr

extrazelluläre Matrix EZM

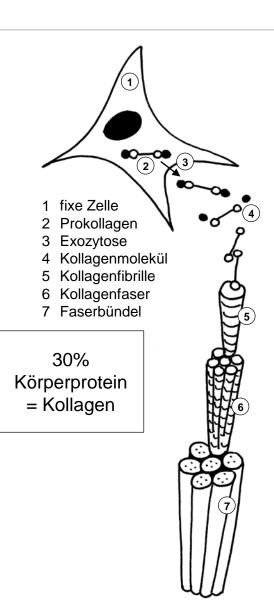
Kollagenfasern elastische Fasern

geformt

Proteoglykane Adhäsionsproteine Hydroxyapatit

ungeformt

Kollagen


- Prokollagen
 - 300 nm lange stabförmige Tripelhelix, intrazellulär synthetisiert
 - posttranslationelle Stabilisierung: Vitamin C, Mangel: Skorbut
 - Exozytose, extrazellulär Abspaltung Propeptide: lösliches Prokollagen → unlösliches Kollagen mit «sticky ends»
- *Kollagenfibrille (EM)*
 - Kollagenmoleküle versetzt aggregiert: Querstreifung im EM, Ø 20-300 nm
 - kovalente Vernetzung
- Kollagenfaser (LM)
 - Bündel von Fibrillen, Ø 1-20 μm
- Proteinfamilie: 28 Kollagentypen
 - fibrillär:

Typ I (>90%, Fasern: kollagenes Bindegewebe, Knochen),

Typ II (Fibrillen: Knorpel, Glaskörper),

Typ III (retikuläre Fasern: retikuläres Bindegewebe, Fettgewebe, Basalmembran)

- nicht fibrillär (bildet keine Fibrillen): Typ IV (Basallamina)
- Mikrofibrillen aber keine Fasern: Typ VII (Ankerfibrillen der Haut)

Bindegewebe

- fixe Zellen
 - Fibrozyten = Fibroblasten
 - teilungsfähig: gute Regeneration, Funktion als Ersatzgewebe
- kollagenes Bindegewebe
 - Kollagen Typ I, variable Menge elastische Fasern
 - locker (zellreich, viele freie Zellen, feine Fasern): Organfeingerüst, Lamina propria in Schleimhäuten, Gefäss-Nerven-Strassen
 - straff (zellarm, dicke Fasern): geflechtartig: Organkapsel, Lederhaut, Dura, Sklera; parallelfasrig: Sehnen, Bänder
- retikuläres Bindegewebe
 - retikuläre Fasern: Kollagen Typ III
 - Fibroblasten heissen (fibroblastische) Retikulumzellen, viele freie Zellen
 - Knochenmark, lymphatische Organe
- elastisches Bindegewebe
 - elastische Fasern +++, Kollagen Typ I
 - Nackenband, Wirbelbogenbänder, Lunge, Tunica media der Arterien

Zellen

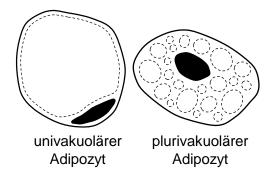
fix, sesshaft frei, mobil

Fibrozyten + bis +++

extrazelluläre Matrix EZM

Kollagenfasern elastische Fasern

Typ I / III - bis +++


Proteoglykane Adhäsionsproteine Hydroxyapatit

+

nein

Fettgewebe

- fixe Zellen
 - Adipozyten, nicht teilungsfähig, Ersatz aus Vorläuferzellen
- relativ wenig Extrazellulärraum (Ausnahme!)
- weisses Fettgewebe
 - univakuoläre Adipozyten, umgeben von retikulären Fasern
 - kollagenes Bindegewebe: Gliederung in Fettläppchen
 - Speicherfett: je nach Kalorienbilanz auf/abgebaut
 - Baufett: Strukturfunktion, normalerweise nicht abgebaut (Fusssohle, Hohlhand, Orbita, Fettkapsel der Niere)
- braunes Fettgewebe
 - plurivakuoläre Adipozyten, gemeinsame Vorläufer mit Muskelzellen
 - auch beim Erwachsenen noch vorhanden
 - UCP1 (uncoupling protein 1) in Mitochondrien: Bildung von Wärme statt ATP bei Abbau von Fettsäuren
- beiges Fettgewebe
 - UCP1 in Subpopulation von univakuolären Adipozyten induzierbar, Wärmebildung statt Speicherung

Zellen

fix, sesshaft frei, mobil

Adipozyten

extrazelluläre Matrix EZM

Kollagenfasern elastische Fasern

Typ III

Proteoglykane Adhäsionsproteine Hydroxyapatit

wenig EZM wenig EZM nein

Knorpel

- fixe Zellen
 - Chondrozyten
 - teilungsfähig nur solange Wachstum (bis Ende Pubertät)
 - Gelenkknorpel nicht regenerierbar
- hyaliner Knorpel
 - Kollagen Typ-II Fibrillen maskiert
 - druckelastisch
 - Skelettentwicklung Embryo bis Pubertät
 - Gelenkknorpel, Nase, Larynx, Trachea, Bronchien, Rippen
- elastischer Knorpel
 - Typ-II Fibrillen & elastische Fasern
 - druck- & biegeelastisch
 - Auricula (äusseres Ohr), Epiglottis (Kehldeckel), kleine Bronchien
- Faserknorpel
 - Typ-II Fibrillen & Kollagen Typ-I Fasern
 - druckelastisch & zugfest
 - Gelenkscheiben, Menisken, Faserring der Zwischenwirbelscheiben

Zellen

fix, sesshaft frei, mobil

Chondrozyten

extrazelluläre Matrix EZM

Kollagenfasern elastische Fasern

Typ II oder I+II
- oder +++

Proteoglykane Adhäsionsproteine Hydroxyapatit

+++ +++ nein

Knochen

- fixe Zellen
 - Osteozyten, nicht teilungsfähig
 - zeitlebens Ersatz aus Vorläuferzellen: Turnover, Frakturheilung
- Mineralisation
 - nadelförmige Hydroxyapatit-Kristalle (Kalzium-Hydroxyl-Phosphat), um und zwischen Kollagenfibrillen: keine Kollagenfasern, zug- und druckfester Verbundwerkstoff
 - zuletzt beigefügt: noch nicht mineralisierte extrazelluläre Matrix des Knochengewebes = Osteoid
- Geflechtknochen
 - extrazelluläre Matrix noch unorganisiert, Kollagenfibrillen geflechtartig
 - neugebildeter Knochen (Wachstum, Frakturheilung), Felsenbein der Schädelbasis lebenslang
- Lamellenknochen
 - Lamellen mit parallel verlaufenden Kollagenfibrillen
 - vorherrschend im reifen Skelett

Zellen

fix, sesshaft frei, mobil

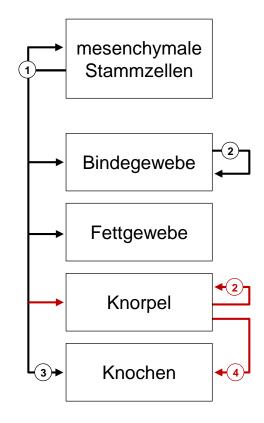
Osteozyten

extrazelluläre Matrix EZM

Kollagenfasern elastische Fasern

Typ I

Proteoglykane Adhäsionsproteine Hydroxyapatit


++

++ ja

Entwicklung, Ersatz und Reparatur

- ① Stammzellen & Vorläuferzellen
 - mesenchymale Stammzellen: asymmetrische Teilung,
 → Selbsterneurung + Bildung von Vorläuferzellen für fixe Zellen:
 - Fibroblasten, Adipozyten, Chondrozyten, Osteozyten
 - Vorläuferzellen: symmetrische Teilung \rightarrow Differenzierung, keine Selbsterneuerung
 - Mesenchym = embryonales Bindegewebe aus Stammzellen, Zellfortsätze, EZM strukturlos ohne Fasern
 - Erwachsener: einzelne Stammzellen persistieren im reifen Binde-und Stützgewebe, ausser im Knorpel
- ② Teilung differenzierter Zellen
 - nur Fibroblasten und während Wachstum (Embryo bis Pubertät) Chondrozyten.
- Knochenaufbau & -Umbau
 - Osteoblasten: Vorläufer der Osteozyten, bilden Osteoid, teilungsunfähig
 - Osteozyten: Mineralisation der EZM, teilungsunfähig
 - Osteoklasten: Abbau mineralisierter EZM von Oberfläche aus
- Osteogenese = Entstehung von Skelettstücken im Embryo
- ③ direkt = desmal: aus Mesenchymverdichtung (Clavicula, Scapula, Schädelkalotte)
- (4) *indirekt = chondral: aus knorpeliger Anlage (meiste Knochen)*

- 1 Zellnachschub via Vorläuferzellen
- 2 Selbsterneuerung durch Zellteilung
- 3 direkte Osteogenese
- 4 indirekte Osteogenese
- → nur bis Abschluss Wachstum

