High brain levels of neprilysin ameliorate Alzheimer pathology and rescue Aβ-dependent cognitive deficits

Mohajeri MH¹, Poirier R¹, Wolfer DP², Nitsch RM¹

¹ Div. of Psychiatric Research, Univ. Zurich, Zurich, Switzerland ² Inst. of Anatomy, Univ. Zurich, Zurich, Switzerland

Abnormal accumulation of β -amyloid (A β) peptide in the brain is considered as the first pathological key event leading to Alzheimer's disease (AD). Therefore, reduction of A β production, or its accelerated clearance from the brain, were proposed as therapeutic targets for drug development to ameliorate AD pathology and related cognitive deficits.

Activation of enzymes that degrade $A\beta$ in vivo may be a valuable tool for AD therapy. We show here that neuronal upregulation of endogenous neprilysin in young transgenic mice expressing the AD-causing APP mutations led to reduction of brain $A\beta$ levels and delayed amyloid plaque deposition. Moreover, neuronal expression of neprilysin rescued, in the Morris water maze, the A β -dependent memory deficit of an AD mouse model. Our results suggest neprilysin upregulation/activation as a therapeutic approach to prevent A β -related cognitive deficits in AD.

Supp. NCCR "Neural Plasticity & Repair"